MIRST-DM: Multi-instance RST with Drop-Max Layer for Robust Classification of Breast Cancer

نویسندگان

چکیده

Robust self-training (RST) can augment the adversarial robustness of image classification models without significantly sacrificing models' generalizability. However, RST and other state-of-the-art defense approaches failed to preserve generalizability reproduce their good on small medical sets. In this work, we propose Multi-instance with a drop-max layer, namely MIRST-DM, which involves sequence iteratively generated instances during training learn smoother decision boundaries datasets. The proposed layer eliminates unstable features helps representations that are robust perturbations. approach was validated using breast ultrasound dataset 1,190 images. results demonstrate achieves against three prevalent attacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

Multi Layer Architecture for Breast Cancer Diagnosis

Hariharan Ranganathan Principal, Rajiv Gandhi College of Engineering, Chennai, India [email protected] Abstract Breast cancer is one of the dangerous cancers among women. Due to this, the rate of death increases every year. In order to ease the radiologist task and early detection of breast cancer, multilayer architecture based on dyadic wavelet transform and Gaussian Mixture Model (GMM) is prop...

متن کامل

Learning Instance Specific Distance for Multi-Instance Classification

Multi-Instance Learning (MIL) deals with problems where each training example is a bag, and each bag contains a set of instances. Multi-instance representation is useful in many real world applications, because it is able to capture more structural information than traditional flat single-instance representation. However, it also brings new challenges. Specifically, the distance between data ob...

متن کامل

Classification of mammograms for breast cancer detection based on curvelet transform and multi-layer perceptron

In this paper, classification of mammograms for breast cancer detection based on Discrete Curvelet Transform (DCT) and Multi-Layer Perceptron (MLP) is proposed. The mammogram patches are first filtered by Column wise neighborhood operations Filter (COLFILT). Enhanced patches are further decomposed into four sub-bands by using DCT. Dense Scale Invariant Feature Transform (DSIFT) method is use to...

متن کامل

the study of aaag repeat polymorphism in promoter of errg gene and its association with the risk of breast cancer in isfahan region

چکیده: سرطان پستان دومین عامل مرگ مرتبط با سرطان در خانم ها است. از آنجا که سرطان پستان یک تومور وابسته به هورمون است، می تواند توسط وضعیت هورمون های استروئیدی شامل استروژن و پروژسترون تنظیم شود. استروژن نقش مهمی در توسعه و پیشرفت سرطان پستان ایفا می کند و تاثیر خود را روی بیان ژن های هدف از طریق گیرنده های استروژن اعمال می کند. اما گروه دیگری از گیرنده های هسته ای به نام گیرنده های مرتبط به ا...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-16440-8_39